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GROUP PROPERTIES AND INVARIANT SOLUTIONS OF EQUATIONS 

DESCRIBING TWO-DIMENSIONAL FLOW OF GLACIERS 

F. Kh. Akhmedova and V. A. Chugunov UDC 517.958,551.324 

One of the most important problems of contemporary glaciology is the construction of 
a mathematical theory of glacial mechanics, in which the development of mathematical models 
of glaciers plays a special role. Two different approaches can be distinguished in prob- 
lems involving mathematical modeling of various processes. The first involves a tendency 
to construct a detailed model of the process under study, ensuring its adequacy by use of 
a large volume of experimental data, and then using the model to obtain quantitative conclu- 
sions and to apply such results in practice. The other approach involves construction of 
a spectrum of exact solutions for particular models, study of which would permit discovery 
of basic features of the process with less expenditure of time. Both directions are valid, 
and the results of the second can be used to justify and refine detailed mathematical models. 
The first approach was developed for glacial mechanics in [1-6], while the second has yet 
to enjoy such rapid growth. The results of the present study should be considered as a con- 
tribution toward the second approach toward mathematical modeling of glacial mechanics. In 
particular, the group properties of a nonlinear differential equation describing the posi- 
tion of the free surface of a glacier will be studied, invariant solutions of the equation 
will be constructed, and these solutions will then be used to study concrete problems aris- 
ing in the study of glacier flow. 

Considering the nonsteady state flow of a glacier in the isothermal approximation, it 
can be shown that the function s y, t) describing the free surface of the glacier satis- 
fies a second-order nonlinear differential equation in partial derivatives 

�9 o (i) 

Z 0 
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TABLE i 

Function zo Vectors ~i 

Arbitrary [ [ ~} 
I 

I ~4 

0 ~1, ~, ~3, ~, ~5 

where t is time; x, y, spatial coordinates; z0(x , y), profile of the channel beneath the ice; 
F(z), function characterizing the rheological properties of the ice, taken as a power function 
r(z) = kz ~. 

Commencing from Eq. (i) and corresponding boundary conditions for E, all other character- 
istics of the glacier flow can be determined, in particular velocity in any direction, stresses 
produced within the glacier, etc. Thus, the basic problem of glacier-flow theory is determin- 
ation of the form of the free surface s 

Equation (i) is significantly nonlinear, and its solution can be obtained in general 
form only by approximate numerical methods. The absence of a priori estimates of the accu- 
racy of numerical methods for solving equations of the form of Eq. (i) makes it necessary 
to construct analytical solutions, even if only for special self-similar cases, so that the 
corresponding difference methods can be tested. Some of these solutions, obtained on the 
basis of group analysis of Eq. (I), are of independent theoretical interest. 

Construction of the full spectrum of invariant solutions of a concrete differential equa- 
tion is based on the group properties of the equation [7]. We will consider the case in which 
u = s - z0, assuming that z0(x, y) is an arbitrary function of its arguments, with a ~ i. 
The results of a group analysis of Eq. (i) in terms of tangent vector fields ~i of local 
single-parameter groups G z admitted by this equation which define the bases of Lie algebras 
of the corresponding infinitesimal operators are presented in Table i, where {~} correspond 
to the base of the fundamental Lie algebras; the directional vectors ~i of the base infini- 
tesimal operators X i on which the nucleus is expanded depending on the concretization of the 
function z0(x, y) have the form 

~1 = ( l , o , o , o , o , o ) ,  ~ = (o, i , o , o ,  o ,o) ,  ~ = (o ,o ,  1, o, o, o), 
~ = (0, O, t,. - -u / ( t  + 2a), --2v/(l q- 2~), --2w/(l A- 2~)), 
~5 = (x, y, 0, u(l  + a)i( i  q- 2=), vl(i q- 2a), wl(t q- 2~)); 

t h e  i n f i n i t e s i m a l  o p e r a t o r s  X i = ~i %. Here ~ = (a/%x, ~ / ay ,  %/3t ,  %/3u, 
w a r e  a u x i l i a r y  f u n c t i o n s :  

8/8v, a/%w); v and 

05--1 

v = ~ (azo lO~  + OulO~)[1 + (<~lv) ~=] ~ ,  
~ - - 1  

w = u (Ozol@ + OulOy) [1 + (v/w) ~] ~ .  

We will use the data of Table 1 to construct invariant solutions of Eq. (i). To find 
the corresponding optimal systems of invariant solutions it is necessary to define all classes 
of such one- and two-dimensional subalgebras and their invariants. These are presented in 
Table 2. The most general and nontrivial of the second-range invariant solutions is the solu- 
tion <XX 4 + Xs> , which is dependent on two arbitrary parameters ~ and X. As follows from 
Table 2, this solution can be sought in the form 13 = ~(11, 12 ) or 

I+~--% 

u(r ,  t) = t ~ ( 1 + 2 = ) ~ ( ~ ) ,  ~ = r~/t, r = ]/'x 2 + g~. (2)  
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TABLE 2 

Optimal 
--, subal~ebras 

<~X~ + X~> 

Invariants 

= x ,  __y~' 

ttl+cr 

-2X 

U I+~-~ U 
I~  - -  v , I~ = -~ 

Invariant-- 
solutions 

s e c o n d  r a n g e  

1+c~--% 

u - -  tZ'(z+z~Z)q)(ll, 12); 

I+~--% 

u = tm+=~)q~ 01) 
(q = r~./t) 

Channel form 

1 +ct-.X 

1+0~--~. 
Z 0 = C r  i+205 

(6" = const) 

I 
<sin p X~ + cos g X2> [ I ,  = x cos I~ - -  Y sin I~, I I3 = $' 13 = U, 14 = u = q~(I1, l~) Zo = const 

= p~ 15 ~ 

11 = x, 13 = y, 13 = u, z Arbitrary 
�9 funct zon <X,> 14 = v, I~ = u' u = r 12) o -- . 

<sin I~ X l  + 

+ Cos l~ X~ + 7 X,> 

~p ,  ~ :# o 

11 = tr cos ~ - -  y s in  ~, 
Iz  = 7 Y - -  cos ~ . In  t, 
I a = r u t +  2~, 

u 2 

I 4 = - - v '  15=~v 

1 

u = t I+2r162 /2) z o = COSSt 

<XX, + X~, 
s in  [~X1 + cos [3 X~> 

11 = (y s in  ~ - -x  cos ~)X 
t 

t I~-- X(~-~' 
ul+Ct--~. 

~--~X 

u 1+r162  v 

first r a n g e  

1+r 

u = tm+2~)q)(Zl) 

Z 0 = c o n s t  

Q~ X4 + Xa, Xa> 

<sin [3 Xl  + cos g X2, 
Xs> 

<sin 13 Xl + cos I~ X~, 
s in  fi X l  + 

+ c o s  fi X~ + 7 X~> 

<X3, s in  ~ X1 + 
"~BO g fi X2 ~-  "~ X4> 
~r ~ # o  

X "yg 
I1  = ~ "  12 - -  ~,(1+2r162 

u l + a - k  

1--2~, 
u l + ~  v 

Ia  v ' 14 = 

1+r162 
c + u  ~+2~1 (11) ' 

oonst 

I 
[ 1 = x c ~  ] 

1 2 =  u , I  a v, 1 4 =  w u = q~(I1) 
[ 

I1 = x cos 13 - -  y Sin I~, 
i 2  ~ t ~ 1 + 2 0 5  1 

u 2 v u =  t 1 + 2 ~ r  

Ia  v ' I~ w ' 

I~ = 7Y -}- cos ~. (1 + w] 
-{- 2 a ) . l n  u, u v -= e (l+2tz)c~ ~ %0 = 
/ u2 z v (z~) 

3 V ~ 4 W 

gO = conSt 

z o = r 

const  

Substituting Eq. 
tion ~(q): 

(2) in Eq. (i), we arrive at an ordinary differential equation for the func- 

(~.-I)r ) '  a(~,-1)-I 
n x , ~ + ' r 1 6 2  + ;~ :n  ~ , ~ ' + % ' I , ' I  ~'-~ + 

IH-(z-- ~ 
+ ~ 1 ~ '  z ( 2 ~ z +  1 ) ~  = O. 

(3 )  
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As solutions of the problem with moving "front" we must choose only those solutions of Eq. 
(3) which satisfy the boundary condition ~[q=N0 = 0 for q0 ~ 0. Then, from Eq. (2), 

ro = (qot) 1/~'. (4) 
We will enumerate the concrete solutions which can be found in this manner. 

Solution i. Planolinear Spreading of the Glacier on a Horizontal Bed. Taking X = 3a + 
2 in Eqs. (2)-(4), we obtain the analogous problem which was considered in [8]. 

Solution 2. Radial Spreading of the Glacier on a Horizontal Bed. At the initial moment 
let the entire ice mass be concentrated at the point D = 0, upon which spreading commences. 
In this case we add to Eq. (3) the conditions 

~ l t : .  = ~('q)i r  = Q h = , o  = Q I,=o = O. ~ ~1r 09 dn = t .  
0 

where 6(q) is a Dirac function; Q = ~a+2~,[~,[a-1 is the ice mass loss at the boundaries of 
the glacier. The latter of these (condition of constancy of mass) gives X = 5a + 3. The 
function ~(N) and constant Do are defined from Eq. (3) with consideration of boundary condi- 
tions. Finally, we find 

~ / a+1 ~+I ~+i 

~1 = rS=+8/t, ro = (~lot) V(5~+z), ~1o > O. 

For a glacier of unit volume 

(5r162 4-8)(20~4-1) 

L t ~, ~+i ' 2~+ 

[where B(x, y) is a beta function]. 

Let s t) be a solution. As was shown in the problem of [9] involving flow of a gla- 
cier with arbitrary initial distribution, at large values of t it will tend to u(r, t), i.e., 

l (r ,  t) u (r ,  t ) +  o t - ~  

Thus, the solution found not only gives a qualitative picture of glacier flow, 
evaluation of glacier behavior at large time values. 

Solution 3. Radial Spread of a Glacier in a Channel z n = r -2 From Eqs. 
X = 5~ + 3 and the ice mass budget 

5(~+i) 5~+I 

F = t 5~+~ n s ~ + ~ / ( ~ )  

[where f(q) is a function dependent on the invariant D], it follows that 

it permits 

(2)-(4) at 

u (r, t) t ~-+~ .~ (~1) + ~1 ~+~ ,'~=+z/t, 
1 l 

"I t "~'~+8 ro t lo  ) , r l  = ( rh t )  r'cc+a, ~ 1 o > 0 .  

The function ~(D) and constants D0 and Dz for specified f and a are defined from Eq. (3) with 
boundary conditions 

~o It=o = ~ It=o = r I~=% = r I . = ~  = Q I,~=no = Q I , ,=~ = O, 
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This solution is of interest in that it allows prediction of the form of a glacier de- 

scending from a mountain slope with a specified ice mass budget. 

Solution 4. Model of a Glacier with Fixed Boundary (planolinear flow). At the initial 

moment let the free surface be described by the equation 

At x = 0, s = 0, Q = 0. 
0; then 

f a + l  

lll=o={k(-- x) ~+~, x<~O,: 
(0, x > O .  

We will seek a solution in the form <Xg + ~X~> [8] at ~ = -2, z 0 = 

1 a-l-1 

l (x, t) =(to - t) -'~+~ B (--  x)~+~, 
a(4a+3) 

+ !)- (30r + 2) ] (3~+3)~ 
to = (B/k)=~+', B ,  = [!2a ~z:~i J / /  

a + l  

(3so + 2) 8~+~. 

(5) 

Solution 5. Model of a Glacier with Fixed Boundary (radial flow). This model is simi- 
lar to the preceding one. From Eqs. (2)-(4) at z 0 = 0, ql/A = r/tl/A, X + ~ we find the exact 
solution for determining the free surface of the glacier 

1 cz+l 

l ( r , t ) = ( t  o - t )  2a+ir2Sr 2 ~ + I  " ]~.cz+, I(~ + ~(-fJ$ ai'aJ " 

(6)  

Solutions (5) and (6) are interesting in that they permit prediction of the existence 
of a glacial form such that over the course of a certain time the edge of the glacier will 
remain immobile and will begin to move only after a corresponding readjustment of the profile. 

6--I ( 
Solution 6. Glacier Located in a Steady State on a Channel z0 (reos~)2(~ ~ = areetg ~ 

= ~x 2 + y2). We turn again to Table 2. The most general and nontrivial of the first range 
invariant solutions is the solution <~X 4 + Xs, Xa>, which depends on the two arbitrary param- 
eters a and ~. As follows from Table 2, we may seek this solution in the form 

i+~-X 1+~-~ 
u = y 1+2~ 9(n) = (r sing) 1+2~ ~01), (7) 

z = - - = c t g %  r =  ~x2+y~.  y 

Substituting Eq. (7) in Eq. (i) to determine the function ~(~) at ~ = (3 + 5a)/[2(a + i)], 
we obtain an analog of Eq. (3): 

{I_ I )]} a--i 2 -7-- a_i ' 
*~+~ (~'  + 1')= + 2 (~ + ~) (~ + I) - ~ (~' + I ' )  ( , '  + I ' )  - ~ ~ ( ~  ( ,  + I)  - ~ ( , '  + 13 = o. (8)  

1 

0 
/ /f I I I I 

I I 

f l  j ~" I ~  

I / L / 

Fig. 1 
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Here ~(N) and f(D) are functions dependent solely on the invariant ~; F = f(N) is the ice 
mass budget. The function ~(N) and constants ~0 and NI for specified ~0, f(N) are defined 
from Eq. (8) with boundary conditions 

where 

( x - - 1  

The solution of the problem thus formulated is easily found in the closed form 

Z = r~!~+~),o, % < l., 
�9 ( % - - ]  

l(n) = 
~1o = ctg qOo, ~h = ctg qol, 

[ 2((%+i)] 
< = 

The solid lines of Fig. i show glacier surfaces, with dashed lines being the glacier channels. 

It is of interest to find the solution of significantly two-dimensional problems with 
a complex channel base. An attempt was made to construct such a solution for a channel form 
z 0 = xa/y 4 + const/y 2. However, such problems are not trivial, and there are definite diffi- 
culties found in solving them. Therefore, significantly two-dimensional problems with a com- 
plex channel require special attention. 
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